
NECDC UNCLASSIFIED October 1998

Verification of Radiation Transport Packages (U)

Mark G. Gray
X-TM

Los Alamos National Laboratory

Code verification for scientific simulation, ensuring that a code solves the equations it’s supposed
to solve, is an important part of software quality assurance. Verification is not merely testing: ver-
ification activities instead permeate the analysis, design, and implementation phases of software
development. In the analysis and design phases Design by ContractTM1 formalizes coding require-
ments and assumptions that are the basis for white-box testing. In the implementation phase the
analytic test method and levelization are the basis for grey-box unit testing. Finally, comparison
with analytic solutions is the basis for black-box systems testing. In this paper I describe the ap-
plication of these testing disciplines to radiation transport packages. (U)

Keywords: verification, validation, radiation transport

Introduction
I have been thinking about the problem of code verification for some time now. On the one hand

talk of the formation of a verification and validation group indicates its importance to some, on the
other hand lack of the formation of a verification and validation group indicates its unimportance
to others. In either case I wondered of what importance verification was to me, a code physicist.
Why is verification important? Where does verification fit in the software engineering process?
And how do I fulfill my verification responsibilities?

My original idea was to decide what I should do by looking at the best practices for verification,
and adopting those appropriate to my own work. Although I have remained true to this original
idea, somewhere along the way I found answers to the verification problem that gave me much
more than I had been looking for; I developed a deep appreciation of role of verification and
validation as the very heart of the insight which computational physics can offer.

Why is Verification Important
My first unexpected insight was that if verification and validation were both necessary, it must

be because two different models were being tested against reality.
To see this, consider the diagrammatic description of reality and the modeling processes given

in Figure 1. Given some experimental initial state, Ip, physical processes, P, produce an observable
output, Op.

To predict Op we create a mathematical model, M. By encoding the initial physical state, Ip, via
Emp into the initial model state, Im, M can predict the model output, Om, which can be decoded via
Dpm into a physical prediction, Op. If the model is valid its predictions match the actual physical
result.

The mathematical model is much more than just a predictive tool. We visualize, discuss, debate,

1“Design by Contract” is a trademark of Interactive Software Engineering.

1

UNCLASSIFIED

NECDC UNCLASSIFIED October 1998

Ip

?

P

Op

Im

?

M

Om� Dpm

-Emp

Ic

?

C

Oc

�
�
�
��

Dmc

?

�
�
�
�	 Ecm

?

@
@
@
@REcp

?@
@
@

@I

Dpc

Figure 1: Structural Role of Verification and Validation. Verification ensures that the code matches
the model. Validation ensures that the code matches the reality. Both are necessary for the model
to provide insight.

and reason about the physical system using the mathematical model. In short, we understand the
physical system through our mathematical model of it.

Unfortunately we can solve the mathematical model for only the simplest physical systems. So
we construct a computational model of the mathematical model.

Verification ensures that encoding from the mathematical model to the computational model,
computing, and decoding from the computation to mathematical model gives the same result as
solving the (analytically unsolvable) mathematical model.

Validation ensures that encoding from the physical world to the computational model, comput-
ing, and decoding from the computational to physical world gives the same result as running the
(politically inaccessible) experiment.

Verification and validation are logically necessary to ensure that the mathematical model mod-
els reality. If the model is valid, then we can use it to understand the physical system; this is the
insight Hamming is talking about when he says:

The purpose of computing is insight, not numbers. –R. W. Hamming[Hamming, 1986]

Where does Verification Fit in the Software Engineering Process
Once I understood the structural purpose of verification and validation, my next insight was

that since verification defines a standard for code quality, it should play a dynamic role in deter-
mining what code is developed and how it is developed. Consider a software development system
shown in Figure 2 which takes code requirements and produces software and other outputs (e.g.
documentation).

Verification compares the output of the code with the model and its products (e.g. analytic
tests); development of the code is guided by its faithfulness to the model. This is solving the
problem (as stated by the model) right.

2

UNCLASSIFIED

NECDC UNCLASSIFIED October 1998

Software
Development

System -other
outputs

-software

?

code
reqts.

Verification
?

model
?

other
outputs

�
�

Model
Development

System
� model

reqts. Validation
?

NTS
?

other
expts.

6 6

Figure 2: Dynamic Role of Verification and Validation. Verification uses the products of the soft-
ware development system to guide the software development process. Validation uses the products
of the software development system to guide the model development process.

The model that provides the standard for verification is itself the product of a model develop-
ment system. In this case there is no way to compare the output of the model with its experimental
input, since the model is not analytically solvable. Instead we judge the model by using its compu-
tational surrogate, which we have verified as equivalent. So validation also defines a standard for
code quality, but its purpose is ultimately judging the fidelity of the model.

Validation compares the output of the verified code with experimental data (e.g. NTS); devel-
opment of the model is guided by its faithfulness to reality. This is solving the right problem (as
stated by experiments).

How Do I Verify
My final insight was if verification played an integral role in quality control, then any quality

control techniques are candidates for verification. Returning to my original idea of looking at the
best practices for verification: how does any industry control the quality of its products?

Lakos provides an answer to this question for cars and for software:

To summarize: a well-designed car is built from layered parts that have been tested
throughly by the manufacturer:

1. in isolation,

2. within a sequence of partially integrated subsystems, and

3. as a fully integrated product.

Once assembled, these parts are easily accessible by mechanics to facilitate proper

3

UNCLASSIFIED

NECDC UNCLASSIFIED October 1998
subroutine cg_solve(self, A, b, x)

! Conjugate gradient solve with preconditioning.
type(cg), intent(inout) :: self
type(crs_matrix), intent(in) :: A
real, dimension(:), intent(in) :: b
real, dimension(:), intent(inout) :: x
REQUIRE(spd(A))
REQUIRE(size(x) == size(A, 1), size(x) == size(b))
! Code...
ENSURE((self%iteration == self%max_iteration).or.

(norm(r) <= self%stop_tol*(norm(A)*norm(x)+norm(b))))

Figure 3: Contract Specification for a Conjugate Gradient Solver. The preprocessor turns
REQUIRE and ENSURE into executable if statements; the subroutine verifies its input and output
each time it is called.

testing and maintenance. In software, the concepts remain essentially the same. –John
Lakos[Lakos, 1996]

Testing in Isolation. The isolated parts of a software product are its routines: how should one
test these parts against the models they implement? Alan Turing considered this question almost
50 years ago:

How can one check a large routine in the sense that it’s right? In order that the man
who checks may not have too difficult a task, the programmer should make a number of
definite assertions which can be checked individually, and from which the correctness
of the whole program easily follows. –Alan Turing[Turing, 1950]

Design by ContractTM[Meyer, 1995] is a technique for making “definite assertions” a part of the
code. It is a specification discipline, an implementation guide, a verification mechanism, and a
documentation discipline.

Design by ContractTM explicitly requires:

1. specification of the signature of a routine: given by the explicit type declaration of all argu-
ment and return values.

2. specification of the allowable inputs: given in REQUIRE statements

3. specification of acceptable output: given in ENSURE statements.

for each routine.
Figure 3 shows the contract specification for a conjugate gradient solver. In this case:

1. the type declarations specify the signature of the routine: all of the argument and return
types are explicitly declared; this subroutine is in a module so the compiler verifies that each
subroutine call has actual argument types that agree with the subroutine declaration.

4

UNCLASSIFIED

NECDC UNCLASSIFIED October 1998

radiation

zathras

material

pde

linalg

mesh

comm

layout

utils

Figure 4: Build Order for Zathras Components. Each component is built in the order shown; unit
tests verify the operation of each component before the next component is built.

2. the REQUIRE statements specify the allowable inputs: the matrix A must be symmetric
positive definite and the size of A and the arrays x and b must be conformal

3. theENSURE statement specifies the acceptable output: either the number of iterations reaches
the maximum specified or the size of the residual is less than the acceptable error bounds

The REQUIRE and ENSURE statements are implemented as m4 macros which expand to standard
Fortran 90 if statements in the test code, or to comments in the production code. These
assertions are turned on throughout the code development and testing phases; each routine verifies
its specified operation every time it is called.

Testing in Subsystems. Software Parts (routines) are assembled into subsystems (called pack-
ages, modules, clusters, components, or units): how should one test these units? In order to test
the functionality of a unit and only the functionality of that unit2, the code must be designed for
testability. Specifically, it should be designed so that it can be built bottom-up in levels as shown
in Figure 4.

Starting from the left, each package is built, tested, and approved before the next level is built.
Testing in this hierarchical, incremental fashion is called levelized testing; it is an efficient and
effective method of assuring code quality:

Distributed system testing throughout the design hierarchy can be much more effective
per testing dollar than testing at only the highest-level interface. –John Lakos[Lakos, 1996]

An example of unit testing for partial differential equation (PDE) solvers is the analytic test
method (ATM). Given:

� A PDE to be solved: Lu = f

� A finite difference solver: ũ = L�1 f

� A Remainder term: R� L�L

the ATM tests the finite difference solver by:

1. Solving Rû = 0

2. Finding f̂ = Lû

2Testing only the functionality of a unit limits the complexity of the test; the test need be no more (or less) complex
than the unit.

5

UNCLASSIFIED

NECDC UNCLASSIFIED October 1998

Table 1: Marshak Wave Solutions. In addition to the matter dominated solutions (1 and 2) I have
added mix (4,5, and 6) and radiation dominated (7 and 8) solutions. Comparing the code to these
solutions verifies the fidelity of the integrated model.

Class Driving Condition Approx. Reference
1 E(0; t) = E0δ(t) a,c,f LAUR-82-2625[Pomraning, 1982]
2 T (0; t) = T0 a,c,f LAMS-2421[Petschek, 1960]
4 T (0; t) = T0 d,f LA-1709[Barfield, 1954]
5 E(0; t) = E0δ(t) c,e (in production)
6 T (0; t) = T0 c,e (in production)
7 E(0; t) = E0δ(t) b,c (in production)
8 T (0; t) = T0 b,c (in production)
a: Cv� 4aT 3

b: Cv� 4aT 3

c: κ= κ0
T n

d: κ= κ0

e: Cv =Cv0T 3

f: Cv =Cv0

3. Solving ũ = L�1 f̂

4. Comparing ũ to û

ATM forces explicit specification of the PDE being solved and the order of difference scheme
being used. These steps can be automated. I have developed Python classes which take a differen-
tial operator L and solution û and produce the forcing function f̂ and boundary conditions suitable
for testing.

Testing in Integrated Products. Integrated testing of radiation transport packages consists of
comparing analytic solutions to the output of the complete package. One standard set of radiation
analytic solutions are the Marshak wave solutions. Marshak[Marshak, 1945] showed that under
general conditions if a local source of energy is introduced into a cold purely absorbing medium,
and the only mechanism for energy transfer is via radiative processes, then the energy propagates
as a thermal wave described by the 1-T radiation-matter energy diffusion equation:

(4aT 3
+Cv)

∂T
∂t

= ∇ �
c

3σ
∇E (1)

The standard Marshak wave solutions, problems 1 and 2, are valid only in the matter dominated
regime Cv � 4aT 3; these solutions ignore the 4aT3 term in Equation 1. I have extending the
Marshak wave analytic solution series by adding problems 4–6, which are valid in the mix regime;
these solutions include all the terms in Equation 1, and problems 7 and 8, which are valid in the
radiation dominated regime Cv � 4aT3; these solutions ignore the Cv term in Equation 1. Table 1
shows the set of Marshak wave solutions with their driving mechanisms and approximations.

Figure 5 compares the matter dominated solution (problem 2) , Barfield’s mixed solution (prob-
lem 4), and the radiation dominated solution (problem 8) for a problem in the mixed regime. The
actual solution lags behind both approximate solutions because including both 4aT3 and Cv terms
gives a larger effective heat capacity. The additional Marshak wave solutions permit code verifica-
tion over a larger range of physical interest.

Analytic tests are an important part of verification, but they cannot be the only verification
activity, since, as Dijkstra wisely notes:

6

UNCLASSIFIED

NECDC UNCLASSIFIED October 1998

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

T
em

pe
ra

tu
re

 (
ke

V
)

Position (cm)

Marshak Slab t = 2.0 sh

Marshak 2
Marshak 4
Marshak 8

Figure 5: Marshak wave solutions: the matter dominated approximate solution (2), Barfield’s
exact solution (4) and radiation dominated approximate solution (8) compared for a mixed regime
problem. Both approximate solutions lead the exact solution because their effective heat capacities
are too small.

Testing can show the presence of bugs, but not their absence. –Edsger W. Dijk-
stra[Bentley, 1988]

Conclusion
Verification and validation are both necessary for the insight needed for science based stockpile

stewardship. Reality, of course, remains the ultimate arbiter, but in the absence of nuclear testing
we cannot ask of her the direct questions we could in the past. It now becomes more essential than
ever to ensure that our computational models are tied to the mathematical models which are our
understanding of reality, and that these models are tied to reality as best we can.

Verification is the assurance that the computational model models the mathematical model. It
is the quality control on the code development effort that permeates the analysis, design, imple-
mentation, and testing phases. Specific verification activities include:

� Design by ContractTM, which makes requirements explicit and testable in a white box view of
the system

� Levelized testing, which makes unit testing possible in a grey box view of the system

� Analytic test method, which is a powerful unit testing technique for PDE solvers.

� Analytic solutions, which provide the black box testing of the integrated system

These techniques, applied throughout the software development process, form the basis of the code
verification needed for quality ASCI codes.

7

UNCLASSIFIED

NECDC UNCLASSIFIED October 1998

Appendix
Proof that verification and validation implies model validity.

Theorem 1 If a code C has been verified against a mathematical model M and validated against
a physical system P then M faithfully models P.

Proof: From Figure 1, verification is the equivalence between the mathematical model’s
operation, M, and the encoding, Ecm, computing, C, and decoding, Dcm, process:

Premise 1 (Verification) Dmc �C �Ecm = M

Similarly, validation is the equivalence between the physical processes operation, P,
and the encoding, Ecp, computing, C, and decoding, Dpc, process:

Premise 2 (Validation) Dpc �C�Ecp = P

The effect of encoding the physical input into the mathematical model, Emp, solving
the mathematical model, M, and decoding the result back into physical terms, Dpm, is:

Dpm� M �Emp =

Dpm�
z }| {

Dmc �C�Ecm �Emp by Premise 1.

We assume that the encoding processes are consistent, specifically:

Axiom 1 Ecm �Emp = Ecp;

and similarly that the decoding processes are consistent:

Axiom 2 Dpm �Dmc =Dpc;

then
Dpm �Dmc
| {z }

�C� Ecm �Emp
| {z }

=

Dpc �C� Ecp = by Axiom 1, 2
P by Premise 2.

Q.E.D.

Assert Macros in m4. Assertion macros for Design by ContractTM are easy to implement using
a preprocessor: here is a minimal implementation for Fortran 90 using GNU’s m4:

changequote() dnl Reset default m4 quotes...
changequote([,]) dnl then set convenient quotes for f90
changecom([!]) dnl Set comment character for f90

dnl Assertion Macros:

dnl Insist that a single logical argument is true.

8

UNCLASSIFIED

NECDC UNCLASSIFIED October 1998

define([INSIST1],
[if (.not.($1)) call Assert_("$1", "__file__", __line__)]) dnl

dnl C assertion model
dnl See: B. W. Kernighan and D. M. Ritchie,
dnl "The C Programming Language",
dnl Prentice Hall, NJ
dnl page 253

dnl If NDEBUG not defined insist that ASSERT’s single logical
dnl argument is true. The order of define and ifdefined is
dnl important: ASSERT must be defined as a test on NDEBUG so
dnl it can be turned on and off at expansion time.

define([ASSERT], [ifdefined([NDEBUG], [], [INSIST1($1)])])dnl

Here Assert is a routine which prints an error message such as

Assertion failed: expression, file filename, line nnn

and aborts execution.
More sophisticated assertion models include the assert levels REQUIRE and ENSURE, multi-

line conditions, and non-fatal assertions.

Analytic Test Method Example. The energy deposition split equation for Zathras takes the
form:

Cv
dT
dt

= Ḣ (2)

where Cv is the medium’s heat capacity, T is the medium’s temperature, and Ḣ is the energy source.
This equation is solved using a first order differencing scheme, hence:

L = Cv
d
dt

; (3)

L = Cv
∆
∆t

; (4)

R � L�L = Cv
∆t
2

d2

dt2 : (5)

Applying the analytic test method to this system, we:

1. Find the analytic test solution:

RT̂ = 0; (6)

Cv
∆t
2

d2T̂
dt2 = 0; (7)

T̂ = at+b (8)

9

UNCLASSIFIED

NECDC UNCLASSIFIED October 1998

2. Find the analytic forcing function:

ˆ̇H = LT̂ ; (9)

ˆ̇H = Cv
d
dt
(at+b); (10)

ˆ̇H = aCv: (11)

3. Solve the finite difference approximate equation:
Algebraically:

T̃ n+1
= T̃ n

+
∆t
Cv

aCv; T̃ (0) = b (12)

Computationally:

T = T + (Delta_t/C_v) * H_dot

4. Compare the computational and analytic solutions:
Algebraically:

T̃ n+1
= a(n+1)∆t+b; (13)

Computationally, if T̂ = 5t+7:

t T̃ T̂ T̃ � T̂
0.1 7.5 7.5 0.0
0.2 8.0 8.0 0.0
0.3 8.5 8.5 0.0
0.4 9.0 9.0 0.0
0.5 9.5 9.5 0.0
0.6 10.0 10.0 0.0
0.7 10.5 10.5 0.0
0.8 11.0 11.0 0.0
0.9 11.5 11.5 0.0
1.0 12.0 12.0 0.0
1.1 12.5 12.5 0.0
1.2 13.0 13.0 0.0
1.3 13.5 13.5 0.0
1.4 14.0 14.0 0.0
1.5 14.5 14.5 0.0
1.6 15.0 15.0 -1.7763568394e-15
1.7 15.5 15.5 -1.7763568394e-15
1.8 16.0 16.0 0.0
1.9 16.5 16.5 -3.5527136788e-15

Frequently Asked Questions.

1. Is a code-to-code comparison verification or validation?

That depends on the pedigree of the code and the purpose of the comparison. Consider a
new code C which is compared to a leagacy code L.

10

UNCLASSIFIED

NECDC UNCLASSIFIED October 1998

Ip

?

P

Op

Im

?

M

Om� Dpm

-Emp

Ic

?

C

Oc

�
�
�
��

Dmc

?

�
�
�
�	 Ecm

?

@
@
@
@REcp

?@
@
@

@I

Dpc

Il

?

L

Ol

?

@
@
@
@REcm

?@
@

@
@I

Dmc?
-Dlc

� Ecl

Figure 6: Legacy Code Comparison for Verification. If the legacy code is a surrogate for the model,
then comparison to it is verification.

If the legacy code has been verified against a model M, and code C implements that same
model, then code L is a surrogate for the model M, and comparing code C’s output to code
L’s output can be used to verify that C correctly implements model M. In this case the
code-to-code comparison is verification, as shown in Figure 6.

If the legacy code has been validated against reality P, and especially if code C implements a
different model than the legacy code, then code L is a surrogate for reality P, and comparing
code C’s output to code L’s output can be used to validate that C correctly models P. In this
case the code-to-code comparison is validation, as shown in Figure 7.

Most code-to-code comparisons are done because the legacy code L has successfully mod-
eled some experiment. In this case the comparison is done for validation purposes.

2. How would you evaluate the quality of the legacy codes?

The legacy codes are highly successful at doing what was required of them: they are valued
by the designers and have been used to design, build, and maintain the stockpile. But if we
are to be successful at producing codes with truly predictive capabilities in the absence of
testing, then we must hold these new codes to higher standards of verification and validation
than in the past.

3. Does the verification and validation diagram imply specific roles for code physicists? Design
physicists?

No. Figure 2 specifies functions that need to be performed, not roles. In the development
of my package, I have done model development, verification, and software development.
Designers who have contributed to this package have done model development, verification,
and validation. Participation in various roles is necessary for the confidence of Code and
Design physicists in the final product.

11

UNCLASSIFIED

NECDC UNCLASSIFIED October 1998

Ip

?

P

Op

Im

?

M

Om� Dpm

-Emp

Ic

?

C

Oc

�
�
�
��

Dmc

?

�
�

�
�	 Ecm

?

@
@
@
@REcp

?@
@
@
@I

Dpc

Il

?

L

Ol

�
�
�
��

Dmc

?

�
�
�

�	 Ecm

??
� Dlc

-Ecl

?

Figure 7: Legacy Code Comparison for Validation. If the legacy code is a surrogate for reality,
then comparison to it is validation.

4. What role should a verification and validation group play?

Designers have often said a code isn’t validated until they say its validated. I have argued
here that a code isn’t verified until the code physicist says it’s verified. A verification and
validation group can assist the design and code physicist in making these evaluations. In
the case of verification a V&V group can provide documentation support for Design by
ContractTM , maintain and run unit tests like the ATM, and maintain and run systems test
like the Marshak wave series. These support roles can make the code physicist’s life much
easier, but he is still ultimately responsible for the verification of his code package, just as
the design physicist is ultimately responsible for the validation of a code.

5. You imply experimental data is a perfect representation of reality. What if it isn’t?

Experimental data is subject to its own methods of validation; the experimentalist is respon-
sible for ensuring that his data is a valid representation of reality. It is no more perfect than
the model or code; in all of these cases human judgment is needed to access the quality of
the product. The fidelity of experimental data to reality must be taken into account when a
model is validated.

6. Isn’t SBSS impossible without experiments (nuclear tests)?

Yes, it would be impossible without nuclear tests. The basic scientific method requires a
firm basis in reality through the validation of theory with experiment. However, we do have
a wealth of historic nuclear test data which can be used for validation. Whether this historic
data, together with non-nuclear experiments, is enough is the crucial ASCI question.

7. Isn’t your verification and validation diagram oversimplified? Aren’t there many models
between (for example) the mathematical and computational models?

12

UNCLASSIFIED

NECDC UNCLASSIFIED October 1998

One could consider a set of partial differential equations as the mathematical model; the set
of corresponding finite difference equations as another model, the (possibly approximate)
solution method for the finite difference equations as yet another model, and so on up to the
executable code model. My V&V diagram lumps all of these models in one step to illustrate
the essence of verification. Verification is any activity which ensures that correspondence of
the mathematical model and the computational model, no matter how many models inter-
vene.

8. What is the difference between physics verification and software verification?

Some people use these terms to distinguish between activities done to ensure faithfulness to
the model (e.g. Analytic tests) from those done to ensure software quality (e.g. Design by
ContractTM, levelized testing). Both of these activities are necessary for verification.

9. What is software quality?

Quality is value to some person. If ASCI is to provide the understanding necessary for a
predictive capability, then it must value the verification and validation activities necessary
for insight. A quality ASCI code is one that has (at least) been verified and validated.

10. What one additional thing would you do for verification?

Formal technical reviews. All of the techniques I’ve discussed in this paper are designed to
convince me that the code is faithful to its model. Formal technical reviews would ensure
the community that a code has been verified, without imposing unnecessary bureaucracy.

References
[Hamming, 1986] R. W. Hamming, Numerical Methods for Scientists and Engineers, Dover Press

(1986)

[Lakos, 1996] J. Lakos, Large-Scale C++ Software Design, Addison-Wesley (1996)

[Turing, 1950] A. Turing, Checking a Large Routine, talk given at Cambridge University, 24
June 1950

[Meyer, 1995] B. Meyer, Object Success, Simon and Schuster (1995)

[Marshak, 1945] R. E. Marshak, Los Alamos Scientific Laboratory Report LA-230, February
1945

[Pomraning, 1982] G. C. Pomraning, Radiation Hydrodynamics, LA-UR-82-2625, September
1982

[Petschek, 1960] Albert G. Petschek and Ralph E. Williamson, The Penetration of Radiation with
Constant Driving Temperature, LAMS-2421, May 1960

[Barfield, 1954] W. D. Barfield, A Comparison of Diffusion Theory and Transport Theory Results
for the Penetration of Radiation into Plane Semi-infinite Slabs, LA-1709, June
1954

[Bentley, 1988] J. L. Bentley, More Programming Pearls, Addison-Wesley 1988

13

UNCLASSIFIED

